Fibroblast Growth Factor Receptors as Novel Therapeutic Targets in SNF5-Deleted Malignant Rhabdoid Tumors

نویسندگان

  • Simon Wöhrle
  • Andreas Weiss
  • Moriko Ito
  • Audrey Kauffmann
  • Masato Murakami
  • Zainab Jagani
  • Anne Thuery
  • Beatrice Bauer-Probst
  • Flavia Reimann
  • Christelle Stamm
  • Astrid Pornon
  • Vincent Romanet
  • Vito Guagnano
  • Thomas Brümmendorf
  • William R. Sellers
  • Francesco Hofmann
  • Charles W. M. Roberts
  • Diana Graus Porta
چکیده

Malignant rhabdoid tumors (MRTs) are aggressive pediatric cancers arising in brain, kidney and soft tissues, which are characterized by loss of the tumor suppressor SNF5/SMARCB1. MRTs are poorly responsive to chemotherapy and thus a high unmet clinical need exists for novel therapies for MRT patients. SNF5 is a core subunit of the SWI/SNF chromatin remodeling complex which affects gene expression by nucleosome remodeling. Here, we report that loss of SNF5 function correlates with increased expression of fibroblast growth factor receptors (FGFRs) in MRT cell lines and primary tumors and that re-expression of SNF5 in MRT cells causes a marked repression of FGFR expression. Conversely, siRNA-mediated impairment of SWI/SNF function leads to elevated levels of FGFR2 in human fibroblasts. In vivo, treatment with NVP-BGJ398, a selective FGFR inhibitor, blocks progression of a murine MRT model. Hence, we identify FGFR signaling as an aberrantly activated oncogenic pathway in MRTs and propose pharmacological inhibition of FGFRs as a potential novel clinical therapy for MRTs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insulin-like growth factor 2 axis supports the serum-independent growth of malignant rhabdoid tumor and is activated by microenvironment stress

Malignant rhabdoid tumors (MRTs) are rare, lethal, pediatric tumors predominantly found in the kidney, brain and soft tissues. MRTs are driven by loss of tumor suppressor SNF5/INI1/SMARCB1/BAF47. The prognosis of MRT is poor using currently available treatments, so new treatment targets need to be identified to expand treatment options for patients experiencing chemotherapy resistance. The grow...

متن کامل

Imaging, Diagnosis, Prognosis Loss of SNF5 Expression Correlates with Poor Patient Survival in Melanoma

Purpose: Aberrant expression of SWI/SNF chromatin remodeling complex is involved in cancer development. The tumor suppressor SNF5, the core subunit of SWI/SNF complex, has been shown to regulate cell differentiation, cell cycle control, and apoptosis. To investigate the role of SNF5 in the development of melanoma, we examined the expression of SNF5 in melanocytic lesions at different stages and...

متن کامل

SNF5/INI1 deficiency redefines chromatin remodeling complex composition during tumor development.

UNLABELLED Malignant rhabdoid tumors (MRT), a pediatric cancer that most frequently appears in the kidney and brain, generally lack SNF5 (SMARCB1/INI1), a subunit of the SWI/SNF chromatin-remodeling complex. Recent studies have established that multiple SWI/SNF complexes exist due to the presence or absence of different complex members. Therefore, the effect of SNF5 loss upon SWI/SNF complex fo...

متن کامل

Dual Targeting of PDGFRα and FGFR1 Displays Synergistic Efficacy in Malignant Rhabdoid Tumors

Subunits of the SWI/SNF chromatin remodeling complex are mutated in a significant proportion of human cancers. Malignant rhabdoid tumors (MRTs) are lethal pediatric cancers characterized by a deficiency in the SWI/SNF subunit SMARCB1. Here, we employ an integrated molecular profiling and chemical biology approach to demonstrate that the receptor tyrosine kinases (RTKs) PDGFRα and FGFR1 are coac...

متن کامل

Inactivation of the Snf5 tumor suppressor stimulates cell cycle progression and cooperates with p53 loss in oncogenic transformation.

Snf5 (Ini1/Baf47/Smarcb1), a core member of the Swi/Snf chromatin remodeling complex, is a potent tumor suppressor whose mechanism of action is largely unknown. Biallelic loss of Snf5 leads to the onset of aggressive cancers in both humans and mice. We have developed an innovative and widely applicable analytical technique for cross-species validation of cancer models and show that the gene exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013